domingo, 4 de octubre de 2020

3.3 Interpretación geométrica de las soluciones.

Los finitos pares ordenados (x; y) que satisfagan a la ecuación lineal a.x + b - y + c=0 corresponden a los infinitos puntos de una recta del plano. Por tanto, el problema de resolver un sistema lineal de dos ecuaciones con dos incognitas es el problema de estudiar la posición de sendas rectas.

  1. Sistema incompatible (carece de solución) rectas paralelas.
  2. Sistema compatible y determinado (solución única) rectas secantes.
  3. Sistema compatible e indeterminado (infinitas soluciones) rectas coincidentes.

Un sistema de ecuaciones diferenciales son aquellas que tienen varias posibilidades para su solución. Estas son:

1. Solución única: Sólo es posible obtener una solución única para un sistema de ecuaciones lineales intersectado en un único punto determinado, por lo tanto, el sistema de ecuaciones donde tenemos todas las rectas entrecruzándose en un solo punto, se denomina como la solución única del sistema de ecuaciones. Ese sistema de ecuaciones lineales es llamado sistema de ecuaciones lineales consistente independiente. 

2. Sin solución: Es posible que un sistema de ecuaciones lineales no tenga solución cuando ningunas de sus rectas se intersectan entre sí ni siquiera en el infinito, ya que sólo el punto de intersección es la solución para el sistema de ecuaciones lineales Esto sólo puede ocurrir en el caso de las rectas paralelas, por lo tanto, para un sistema con este tipo de ecuación tenemos varias ecuaciones que corresponden a la misma recta y que sólo difieren por la pendiente. Dicho sistema se denomina sistema de ecuaciones lineales inconsistente independiente. 

3. Infinitas soluciones: Sólo en la situación que las rectas de determinado sistema se encuentren unas con otras en un punto infinito, podemos obtener soluciones infinitas. Esto sólo puede suceder si todas las rectas son la misma recta, ya que es en este escenario que se superpondrán unas con otras dándonos puntos infinitos de intersección, es decir, infinitas soluciones. Este sistema es llamado sistema de ecuaciones lineales consistente dependiente.

Con la ayuda de un ejemplo, vamos a entender las diversas soluciones posibles.

Si tenemos un sistema de ecuaciones lineales dado como:

y = 3x – 2 y = -x – 6

No hay comentarios.:

Publicar un comentario

CARATULA

Tecnológico de Estudios Superiores de  San Felipe del Progreso Cuaderno de apuntes ÁLGEBRA  LINEAL  Docente Raúl Nava López Alumno  Luis Ant...