domingo, 2 de agosto de 2020
5 Transformaciones Lineales
5.2 Núcleo e imagen de una transformación lineal.
Teorema 1
Sea T: V S W una transformación lineal. Entonces para todos los vectores u, v, v1,
v2, . . . , vn en V y todos los escalares a1, a2, . . . , an:
i. T(0) = 0
ii. T(u - v) = Tu - Tv
iii. T(a1v1 + a2v2 +. . .+ anvn) = a1Tv1 + a2Tv2 +. . .+ anTvn
Nota. En la parte i) el 0 de la izquierda es el vector cero en V; mientras que el 0 de la
derecha es el vector cero en W.
Teorema 2
Sea V un espacio vectorial de dimensión finita con base B = {v1, v2, . . . , vn}. Sean w1,
w2, . . . , wn vectores en W. Suponga que T1 y T2 son dos transformaciones lineales de V
en W tales que T1vi = T2vi = wi para i = 1, 2, . . . , n. Entonces para cualquier vector v ∈
V, T1v = T2v; es decir T1 = T2.
Ejemplo
Definición 1 Núcleo e imagen de una transformación lineal
Sean V y W dos espacios vectoriales y sea T:V W una transformación lineal. Entonces
i . El núcleo de T, denotado por un, está dado por
ii. La imagen de T, denotado por Im T, esta dado por
Observacion 1. Observe que un T es no vacio porque, de acuerdo al teorema 1, T(0) = 0 de manera que 0 ϵ un T para cualquier transformación lineal T. Se tiene interés en encontrar otros vectores en V que “se transformen en 0”. De nuevo, observe que cuando escribimos T(0) = 0, el 0 de la izquierda está en V y el de la derecha en W.
Observación 2. La imagen de T es simplemente el conjunto de “imajenes” de los vectores en V bajo la transformación T. De hecho, si w = Tv, se dice que w es la imagen de v bajo T.
Antes de dar ejemplos de núcleos e imágenes , se demostrará un teorema de gran utilidad.
Teorema 4
Si T:V W es una transformación lineal, entonces
i.Un T es un subespacio de V.
ii.Im T es un subespacio de W.
Demostracion
i.Sean u y v en un T; Entonces T(u + v) = Tu + Tv =0 + 0 =0 y T( ) = = 0 = 0 de forma que u + v y ∝u están en un T.
ii. Sean w y x en Im T. Entonces w = Tu y x = Tv para dos vestores u y v en V. Esto significa que T(u + v)= Tu + Tv = w + x y T(∝u) = ∝Tu =∝w. Por lo tanto, w + x y ∝w están en Im T.
Ejemplo 3. Núcleo e imagen de la transformación cero
Sea Tv = 0 para todo vϵ V(T es la transformación cero). Entonces un T = v e Im T = {0}.
Ejemplo 4 Núcleo e imagen de la transformación identidad
Sea Tv = v para vϵ V(T es la transformación identidad). Entonces un T= {0} e Im T = V.
Las transformaciones cero e identidad proporcionan dos extremos. En la primera todo se encuentra en el núcleo. En la segunda sólo el vector cero se encuentra en el núcleo. Los casos intermedios son más interesantes.
Ejemplo 5 Núcleo e imagen de un operador de proyección
Sea T:R3 R3 definida por
Entonces x = y = 0. Así, nu T = {(x,y,z):x = y = 0, zϵR}, es decir, el eje z, e Im T = {(x,y,z): z = 0}, es decir el plano xy. Observe que dim un T = 1 y dim Im T = 2.
Definición 2 Nulidad y rango de una transformación lineal
Si T es una transformación lineal de v en w, entonces se define.
Toda matriz A de m*n da lugar a una transformación lineal T:R´´ R´´´ definida por Tx = Ax. Es evidente que un T = NA, Im T = Im A = CA, v(T) = v(A) y p(T) = p(A). Entonces se ve que las definiciones de núcleo, imagen, nulidad y rango de una transformación lineal son extensiones del espacio nulo, la imagen, la nulidad y el rango de una matriz.
5.3 Representación matricial de una transformación lineal.
Su definición Sean V y W dos espacios vectoriales de dimensión n y m, respectivamente, y sea T: V→W una transformación lineal, entonces existe una matriz A de orden m × n llamada matriz de transformación o representación matricial de T que satisface T(v) = Av para toda v en V.
Representación Matricial de una transformación R3 en R4
Si se tiene una transformación T: R3 → R4 dada por
La T representa la transformación, que será representada por AT, mientras que la matriz a su lado representa el vector original. El resultado es la transformación realizada. Para poder representarla de forma matricial lo que se debe obtener es la matriz de transformación. Ya que a la vez se obtiene, se pueden determinar otros datos como el núcleo y la imagen de la transformación.
Para este caso utilizando el resultado de la transformación, se puede determinar fácilmente la matriz de transformación, separando el vector original y determinando las operaciones que se realizaron.;
Y su representación quedaría como la matriz de trasformación multiplicando al vector original para dar como resultado a la transformación:
5.4 Aplicación de las transformaciones lineales: reflexión, dilatación, contracción y rotación.
CARATULA
Tecnológico de Estudios Superiores de San Felipe del Progreso Cuaderno de apuntes ÁLGEBRA LINEAL Docente Raúl Nava López Alumno Luis Ant...
-
Graficar un conjunto de puntos en otro es lo que se conoce como transformación lineal de un conjunto de puntos. Existen ciertas propiedades ...
-
En álgebra linea l, el proceso de ortonormalización de Gram–Schmidt es un algoritmo para construir, a partir de un conjunto de vectores l...
-
Su definición Sean V y W dos espacios vectoriales de dimensión n y m, respectivamente, y sea T: V→W una transformación lineal, entonces ...